By Topic

Adaptive Incremental Learning with an Ensemble of Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The incremental updating of classifiers implies that their internal parameter values can vary according to incoming data. As a result, in order to achieve high performance, incremental learner systems should not only consider the integration of knowledge from new data, but also maintain an optimum set of parameters. In this paper, we propose an approach for performing incremental learning in an adaptive fashion with an ensemble of support vector machines. The key idea is to track, evolve, and combine optimum hypotheses over time, based on dynamic optimization processes and ensemble selection. From experimental results, we demonstrate that the proposed strategy is promising, since it outperforms a single classifier variant of the proposed approach and other classification methods often used for incremental learning.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010