By Topic

Improving Classification Accuracy by Comparing Local Features through Canonical Correlations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dikmen, M. ; Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Huang, T.S.

Classifying images using features extracted from densely sampled local patches has enjoyed significant success in many detection and recognition tasks. It is also well known that generally more than one type of feature is needed to achieve robust classification performance. Previous works using multiple features have addressed this issue either through simple concatenation of feature vectors or through combining feature specific kernels at the classifier level. In this work we introduce a novel approach for combining features at the feature level by projecting two types of features onto two respective subspaces in which they are maximally correlated. We use their correlation as an augmented feature and demonstrate improvement in classification accuracy over simple combination through concatenation in a pedestrian detection framework.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010