By Topic

Segmenting Video Foreground Using a Multi-Class MRF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Patrick Dickinson ; Univ. of Lincoln, Lincoln, UK ; Andrew Hunter ; Kofi Appiah

Methods of segmenting objects of interest from video data typically use a background model to represent an empty, static scene. However, dynamic processes in the background, such as moving foliage and water, can act to undermine the robustness of such methods and result in false positive object detections. Techniques for reducing errors have been proposed, including Markov Random Field (MRF) based pixel classification schemes, and also the use of region-based models. The work we present here combines these two approaches, using a region-based background model to provide robust likelihoods for multi-class MRF pixel labelling. Our initial results show the effectiveness of our method, by comparing performance with an analogous per-pixel likelihood model.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010