By Topic

Intelligent integral backstepping sliding mode control using recurrent neural network for magnetic levitation system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Central Univ., Chungli, Taiwan ; Syuan-Yi Chen

An intelligent integral backstepping sliding mode control (IIBSMC) system using a multi-input multi-output (MIMO) recurrent neural network (RNN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties in this study. First, the dynamic model of the magnetic levitation system is derived. Then, an integral backstepping sliding mode control (IBSMC) system with an integral action is proposed for the tracking of the reference trajectory. Moreover, to relax the requirements of the needed bounds and discard the switching function in IBSMC, an IIBSMC system using a MIMO RNN estimator is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. The adaptive learning algorithms are derived using Lyapunov stability theorem to train the parameters of the RNN online. Finally, some experimental results of the tracking of periodic sinusoidal trajectory demonstrate the validity of the proposed IIBSMC system for practical applications.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010