Cart (Loading....) | Create Account
Close category search window

Improving ANN performance for imbalanced data sets by means of the NTIL technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vivaracho-Pascual, C. ; Comput. Sci. Dept., Univ. of Valladolid, Valladolid, Spain ; Simon-Hurtado, A.

This paper deals with the problem of training an Artificial Neural Network (ANN) when the data sets are very imbalanced. Most learning algorithms, including ANN, are designed for well-balanced data and do not work properly on imbalanced ones. Of the approaches proposed for dealing with this problem, we are interested in the re-sampling ones, since they are algorithm-independent. We have recently proposed a new under-sampling technique for the two-class problem, called Non-Target Incremental Learning (NTIL), which has shown a good performance with SVM, improving results and training speed. Here, the advantages of using this technique with ANN are shown. The performance with regard to other popular under-sampling techniques is compared.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.