By Topic

Design of dynamic petri recurrent-fuzzy-neural- network for robust path tracking control of mobile robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong-Jong Wai ; Dept. of Electr. Eng., Yuan Ze Univ., Chungli, Taiwan ; Chia-Ming Liu

In this study, a robust path tracking control scheme is constructed for a nonholonomic mobile robot via a dynamic Petri recurrent-fuzzy-neural-network (DPRFNN). In the DPRFNN, the concept of a Petri net (PN) and the recurrent frame of internal feedback loops are incorporated into a traditional fuzzy neural network (FNN) to alleviate the computation burden of parameter learning and to enhance the dynamic mapping of network ability. This five-layer DPRFNN is utilized for the major role in the proposed control scheme, and the corresponding adaptation laws of network parameters are established in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance without the requirement of detailed system information and the compensation of auxiliary controllers. In addition, the effectiveness of the proposed robust DPRFNN control scheme is verified by numerical simulations of a differential-driving mobile robot under different moving paths and the occurrence of uncertainties, and its superiority is indicated in comparison with a stabilizing control system.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010