By Topic

Efficient resampling methods for training support vector machines with imbalanced datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Batuwita, R. ; Comput. Lab., Oxford Univ., Oxford, UK ; Palade, V.

Random undersampling and oversampling are simple but well-known resampling methods applied to solve the problem of class imbalance. In this paper we show that the random oversampling method can produce better classification results than the random undersampling method, since the oversampling can increase the minority class recognition rate by sacrificing less amount of majority class recognition rate than the undersampling method. However, the random oversampling method would increase the computational cost associated with the SVM training largely due to the addition of new training examples. In this paper we present an investigation carried out to develop efficient resampling methods that can produce comparable classification results to the random oversampling results, but with the use of less amount of data. The main idea of the proposed methods is to first select the most informative data examples located closer to the class boundary region by using the separating hyperplane found by training an SVM model on the original imbalanced dataset, and then use only those examples in resampling. We demonstrate that it would be possible to obtain comparable classification results to the random oversampling results through two sets of efficient resampling methods which use 50% less amount of data and 75% less amount of data, respectively, compared to the sizes of the datasets generated by the random oversampling method.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010