By Topic

An EEG-based classification system of Passenger's motion sickness level by using feature extraction/selection technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yi-Hsin Yu ; Inst. of Electr. Control Eng., Nat. Chiao-Tung Univ., Hsinchu, Taiwan ; Pei-Chen Lai ; Li-Wei Ko ; Chun-Hsiang Chuang
more authors

Past studies reported that the main electrogastrography (EEG) dynamic changes related to motion sickness (MS) were occurred in occipital, parietal, and somatosensory brain area, especially in the power increasing of the alpha band (8-13 Hz) and theta band (4-7 Hz) which had positive correlation with the subjective MS level. Depend on these main findings correlated with MS, we attempt to develop an EEG based classification system to automatically classify subject's MS level and find the suitable EEG features via common feature extraction, selection and classifiers technologies in this study. If we can find the regulations and then develop an algorithm to predict MS occurring, it would be a great benefit to construct a safe and comfortable environment for all drivers and passengers when they are cruising in the car, bus, ship or airplane. EEG is one of the best methods for monitoring the brain dynamics induced by motion-sickness because of its high temporal resolution and portability. After collecting the EEG signals and subjective MS level in a realistic driving environment, we first do the data pre-processing part including ICA, component clustering analysis and time-frequency analysis. Then we adopt three common feature extractions and two feature selections (FE/FS) technologies to extract or select the correlated features such as principal component analysis (PCA), linear discriminate analysis (LDA), nonparametric weighted feature extraction (NWFE), forward feature selections (FFS) and backward feature selections (BFS) and feed the feature maps into three classifiers (Gaussian Maximum Likelihood Classifier (ML), k-Nearest-Neighbor Classifier (kNN) and Support Vector Machine (SVM)). Experimental results show that classification performance of all our proposed technologies can be reached almost over 95%. It means it is possible to apply the effective technology combination to predict the subject's MS level in the real life applications. The better combination in t- - his study is using LDA and Gaussian based ML classifier. This advantage can be widely used in machine learning area for developing the prediction algorithms in the future.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010