By Topic

Applying support vector machines and mutual information to book losses prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mora, A.M. ; Dept. of Archit. & Comput. Technol., Univ. of Granada, Granada, Spain ; Herrera, L.J. ; Urquiza, J. ; Rojas, I.
more authors

This work presents a feasible solution to the problem of book losses prediction from financial and general data in companies. The specific problem tackled in this work corresponds to a real dataset of Spanish companies. A Mutual Information-based criterion has been applied in order to reduce the initial set of variables, and a Support Vector Machine classifier has been designed to perform the prediction. The results show that the proposed approach obtains an important reduction of the number of variables needed to perform the prediction, improving the generalization capabilities of the model. The accuracy rates were above the 84% in the test set, much better than those obtained by other soft-computing algorithms (such as Genetic Programming, Self-Organizing Maps or Artificial Neural Networks) working with the same dataset and presented in previous works. The proposed approach shows to be promising and could be determinant in providing the experts with the right tools for the selection of the relevant factors and for the prediction in this difficult problem.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010