By Topic

An evaluation of neural network ensembles and model selection for time series prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barrow, D.K. ; Manage. Sch., Dept. of Manage. Sci., Lancaster Univ., Lancaster, UK ; Crone, S.F. ; Kourentzes, N.

Ensemble methods represent an approach to combine a set of models, each capable of solving a given task, but which together produce a composite global model whose accuracy and robustness exceeds that of the individual models. Ensembles of neural networks have traditionally been applied to machine learning and pattern recognition but more recently have been applied to forecasting of time series data. Several methods have been developed to produce neural network ensembles ranging from taking a simple average of individual model outputs to more complex methods such as bagging and boosting. Which ensemble method is best; what factors affect ensemble performance, under what data conditions are ensembles most useful and when is it beneficial to use ensembles over model selection are a few questions which remain unanswered. In this paper we present some initial findings using neural network ensembles based on the mean and median applied to forecast synthetic time series data. We vary factors such as the number of models included in the ensemble and how the models are selected, whether randomly or based on performance. We compare the performance of different ensembles to model selection and present the results.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010