By Topic

State-space control of nonlinear systems identified by ANARX and Neural Network based SANARX models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vassiljeva, K. ; Dept. of Comput. Control, Tallinn Univ. of Technol., Tallinn, Estonia ; Petlenkov, E. ; Belikov, J.

A state-space technique for control of nonlinear SISO systems identified by an Additive Nonlinear Autoregressive eXogenous (ANARX) model is presented. Two cases are shown. In the first case system model is given explicitly in the form of ANARX structure. In the second case controlled system is identified by Neural Network based Simplified Additive NARX (NN-SANARX) model linearized by dynamic feedback. The neural network based model is represented in the discrete-time state-space form. The effectiveness of the approach proposed in the paper is demonstrated on numerical examples with SISO and MIMO systems.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010