Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Cost-sensitive learning methods for imbalanced data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thai-Nghe, N. ; Inf. Syst. & Machine Learning Lab., Univ. of Hildesheim, Hildesheim, Germany ; Gantner, Z. ; Schmidt-Thieme, L.

Class imbalance is one of the challenging problems for machine learning algorithms. When learning from highly imbalanced data, most classifiers are overwhelmed by the majority class examples, so the false negative rate is always high. Although researchers have introduced many methods to deal with this problem, including resampling techniques and cost-sensitive learning (CSL), most of them focus on either of these techniques. This study presents two empirical methods that deal with class imbalance using both resampling and CSL. The first method combines and compares several sampling techniques with CSL using support vector machines (SVM). The second method proposes using CSL by optimizing the cost ratio (cost matrix) locally. Our experimental results on 18 imbalanced datasets from the UCI repository show that the first method can reduce the misclassification costs, and the second method can improve the classifier performance.

Published in:

Neural Networks (IJCNN), The 2010 International Joint Conference on

Date of Conference:

18-23 July 2010