By Topic

Natural Material Recognition with Illumination Invariant Textural Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pavel Vacha ; Inst. of Inf. Theor. & Autom., ASCR, Prague, Czech Republic ; Michal Haindl

A visual appearance of natural materials fundamentally depends on illumination conditions, which significantly complicates a real scene analysis. We propose textural features based on fast Markovian statistics, which are simultaneously invariant to illumination colour and robust to illumination direction. No knowledge of illumination conditions is required and a recognition is possible from a single training image per material. Material recognition is tested on the currently most realistic visual representation-Bidirectional Texture Function (BTF), using the Amsterdam Library of Textures (ALOT), which contains 250 natural materials acquired in different illumination conditions. Our proposed features significantly outperform several leading alternatives including Local Binary Patterns (LBP, LBP-HF) and Gabor features.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010