By Topic

Multiple Model Estimation for the Detection of Curvilinear Segments in Medical X-ray Images Using Sparse-plus-dense-RANSAC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Papalazarou, C. ; Univ. of Technol. Eindhoven, Eindhoven, Netherlands ; Rongen, P.M.J. ; De With, P.H.N.

In this paper, we build on the RANSAC method to detect multiple instances of objects in an image, where the objects are modeled as curvilinear segments with distinct endpoints. Our approach differs from previously presented work in that it incorporates soft constraints, based on a dense image representation, that guide the estimation process in every step. This enables (1) better correspondence with image content, (2) explicit endpoint detection and (3) a reduction in the number of iterations required for accurate estimation. In the case of curvilinear objects examined in this paper, these constraints are formulated as binary image labels, where the estimation proved to be robust to mislabeling, e.g. in case of intersections. Results for both synthetic and real data from medical X-ray images show the improvement from incorporating soft image-based constraints.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010