By Topic

Delay-Optimal User Scheduling and Inter-Cell Interference Management in Cellular Network via Distributive Stochastic Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang Huang ; Department of Electronic and Computer Engineering (ECE), The Hong Kong University of Science and Technology (HKUST), Hong Kong ; Vincent K. N. Lau

In this paper, we propose a distributive queue-aware intra-cell user scheduling and inter-cell interference (ICI) management control design for a delay-optimal celluar downlink system with M base stations (BSs), and K users in each cell. Each BS has K downlink queues for K users respectively with heterogeneous arrivals and delay requirements. The ICI management control is adaptive to joint queue state information (QSI) over a slow time scale, while the user scheduling control is adaptive to both the joint QSI and the joint channel state information (CSI) over a faster time scale. We show that the problem can be modeled as an infinite horizon average cost Partially Observed Markov Decision Problem (POMDP), which is NP-hard in general. By exploiting the special structure of the problem, we shall derive an equivalent Bellman equation to solve the POMDP problem. To address the distributive requirement and the issue of dimensionality and computation complexity, we derive a distributive online stochastic learning algorithm, which only requires local QSI and local CSI at each of the M BSs. We show that the proposed learning algorithm converges almost-surely (with probability 1) and has significant gain compared with various baselines. The proposed solution only has linear complexity order O(MK).

Published in:

IEEE Transactions on Wireless Communications  (Volume:9 ,  Issue: 12 )