By Topic

Scaled Radon-Wigner Transform Imaging and Scaling of Maneuvering Target

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen-Chen Li ; Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China ; Xue-Song Wang ; Guo-Yu Wang

The use of scaled Radon-Wigner transform (RWT) imaging and simultaneous cross-range scaling is proposed for a maneuvering target using a signal model of a rotating target with uniform acceleration. Three steps are needed to realize such a process. First, the rotational parameters are calculated via the weighted linear least squares method after obtaining frequency modulation parameters of signals in multirange cells. Second, rotational parameters are used to compensate for the slow-time signals. Third, inverse synthetic aperture radar imaging of scaled RWT is implemented with cross-range scaling. Parameter substitution changes every component signal from a slanting line to a horizontal line in the time-frequency plane, and the horizontal line integral can be expressed as a cross-range profile. Compared with conventional RWT imaging methods, this algorithm improves calculation speed greatly and provides more stable imaging performance. This method was tested successfully with simulated and experimental radar data.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:46 ,  Issue: 4 )