By Topic

Behavior of machine insulation systems subjected to accelerated thermal aging test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Farahani, M. ; Inst. of Electr. Power Syst. (Schering-Inst.), Leibniz Univ. Hanover, Hanover, Germany ; Gockenbach, E. ; Borsi, H. ; Schäfer, K.
more authors

Accelerated aging tests have been extensively used on motor and generator insulation systems to simulate in a short time period the deterioration mechanisms occurring during normal operation of many years, to identify insulation system designs with longer life time and to support the qualification of a new system. The contribution presents results from extensive investigations on the behavior of two VPI machine test insulation systems (reference and candidate) with thermal class F (155°C), which were subjected to three thermal overstresses in repeated cycles. After each thermal cycle the insulation system is subjected to mechanical stress, moisture, and voltage. In order to check the condition of the insulation systems in a non-destructive manner several properties of insulation like dissipation factor, insulation resistance and partial discharge quantities were measured after each thermal cycle. After that the end of life of the insulation systems were checked with ac voltage and impulse voltage. The results support the qualification by comparative evaluation and they indicate, how the changes in electrical and dielectric properties of insulation take place during the accelerated aging test.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:17 ,  Issue: 5 )