By Topic

Model-Predictive Control of Discrete Hybrid Stochastic Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bemporad, A. ; Dept. of Mech. & Struct. Eng., Univ. of Trento, Trento, Italy ; Di Cairano, S.

This paper focuses on optimal and receding horizon control of a class of hybrid dynamical systems, called Discrete Hybrid Stochastic Automata (DHSA), whose discrete-state transitions depend on both deterministic and stochastic events. A finite-time optimal control approach “optimistically” determines the trajectory that provides the best tradeoff between tracking performance and the probability of the trajectory to actually execute, under possible chance constraints. The approach is also robustified, less optimistically, to ensure that the system satisfies a set of constraints for all possible realizations of the stochastic events, or alternatively for those having enough probability to realize. Sufficient conditions for asymptotic convergence in probability are given for the receding-horizon implementation of the optimal control solution. The effectiveness of the suggested stochastic hybrid control techniques is shown on a case study in supply chain management.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 6 )