Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kopp, C. ; DOPT, Commissariat a l''Energie Atomique, Grenoble, France ; BernabeĢ, S. ; Bakir, B.B. ; Fedeli, J.-M.
more authors

Silicon photonics is a new technology that should at least enable electronics and optics to be integrated on the same optoelectronic circuit chip, leading to the production of low-cost devices on silicon wafers by using standard processes from the microelectronics industry. In order to achieve real-low-cost devices, some challenges need to be taken up concerning the integration technological process of optics with electronics and the packaging of the chip. In this paper, we review recent progress in the packaging of silicon photonic circuits from on-CMOS wafer-level integration to the single-chip package and input/output interconnects. We focus on optical fiber-coupling structures comparing edge and surface couplers. In the following, we detail optical alignment tolerances for both coupling architecture, discussing advantages and drawbacks from the packaging process point of view. Finally, we describe some achievements involving advanced-packaging techniques.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 3 )