Cart (Loading....) | Create Account
Close category search window
 

An Equivalent Lumped Circuit Model for Thin Avalanche Photodiodes With Nonuniform Electric Field Profile

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jalali, M. ; Dept. of Electr. & Comput. Eng., Tarbiat Modares Univ. (TMU), Tehran, Iran ; Moravvej-Farshi, M.K. ; Masudy-Panah, S. ; Nabavi, A.

A staircase approximation method is deployed to model nonuniform field in the multiplication region and its surrounding ambient of a thin avalanche photodiode (APD). To the best of our knowledge, this is the first instance of introducing an equivalent circuit model that is taking the effect of the electric field profile in a thin APD's multiplication region and its surroundings into account. This equivalent circuit model that is developed from the carriers' rate equations also includes the effect of the tunneling current. The tunneling current that can be induced as a small current injected into the multiplication region results in an enhanced model behavior at high reverse bias voltages near breakdown. The output current obtained from the proposed model is compared with available experimental data. This comparison reveals excellent model accuracy, in regard to the current levels and prediction of breakdown voltages for both photo and dark currents. Moreover, simulations demonstrate ability of the present model for gain-bandwidth analysis.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 23 )

Date of Publication:

Dec.1, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.