By Topic

Light Pulse Shapes in Liquid Scintillators Originating From Gamma-Rays and Neutrons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Tomasz Szczesniak ; Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland ; Marek Moszynski ; Agnieszka Syntfeld-Kazuch ; Łukasz Swiderski
more authors

Liquid scintillators loaded with boron-10 or lithium-6 are capable to detect gamma rays, fast neutrons and also thermal neutrons. One of the popular methods applied in order to distinguish events originating from different particles is the pulse shape discrimination (PSD). The previously presented study of boron-10 loaded liquid scintillators using the PSD method showed different discrimination performance in scintillators such as BC523A, BC523A2, EJ339A2 and EJ309B5. It triggered a further study of the light pulse shapes in these scintillators originating from events related to gamma rays, fast and thermal neutrons. The light pulse shapes, measured using the single photon method, were recorded together with the 2-dimensional n/gamma discrimination data. Next, the recorded light pulses were gated using energy and the PSD information to extract pulses characteristic of the only one kind of particles. Finally, the analysis of the light pulse shapes with multi-exponential fits and calculation of decay time constants and intensities of components were performed. The results were compared with the data obtained for liquid scintillators not sensitive to thermal neutrons BC501A, EJ301 and EJ309.

Published in:

IEEE Transactions on Nuclear Science  (Volume:57 ,  Issue: 6 )