By Topic

Growth Simulations of Self-Assembled Nanowires on Stepped Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang, Song ; Inst. of Semicond., Chinese Acad. of Sci., Beijing, China ; Kong, Duanhua ; Hongliang Zhu ; Wei Wang

The growth of self-assembled nanowires on stepped substrates is modeled by means of kinetic Monte Carlo simulations. It is found that the energy barrier at the step edges has a great effect on the formation of nanoislands on stepped substrates. As the barrier is smaller than 0.1 eV, nanowires with high aspect ratios can be obtained. The width, aspect ratio, and separation of the nanowires can be controlled flexibly by the width of the steps or terraces of the substrates. The effects of growth temperature and postgrowth annealing time on the morphology of the nanowires are studied. The nanowires are found to be more robust than the self-assembled nanoislands formed on plane substrates. Strain is shown to increase the width and decrease the aspect ratio of the nanowires. The scaled nanowire length distribution is also studied. As the coverage is larger than 0.2 ML, the distribution is apparently different from that at lower coverage, which reflects the different growth mechanisms of the nanowires at different layer thickness.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 4 )