Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Optimal Power Allocation for Relay Assisted Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jayasinghe, L.K.S. ; Sch. of Eng. & Technol., Asian Inst. of Technol., Pathumthani, Thailand ; Rajatheva, N.

In this paper, we study the optimal power allocation of wireless relay nodes which are used in the secondary user (SU) communication of a cognitive radio (CR) network. We consider the behavior of transmitting powers of SUs where those powers are limited to the tolerable interference as seen by the primary user (PU) communication. To improve the performance of the secondary communication based on minimizing the outage probability, we re-formulate the power allocation problem with a new set of constraints. These are obtained by considering the co-channel interference generated by the SU communication to the PU communication. The power allocation problem is solved for both regenerative and non regenerative relay models under Rayleigh fading conditions. SU communication with N number of relays is discussed and compared. The outage probability of SU communication is limited by the interference power threshold (IPT) constraints of PUs and is affected significantly by the IPT levels of PUs.

Published in:

Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd

Date of Conference:

6-9 Sept. 2010