Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Nonuniformly Spaced Photonic Microwave Delay-Line Filters and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Yitang Dai ; Microwave Photonics Res. Lab., Univ. of Ottawa, Ottawa, ON, Canada ; Jianping Yao

A finite impulse response (FIR) filter for microwave signal processing implemented based on an optical delay-line structure with uniformly spaced taps has been extensively investigated, but the realization of such a filter with negative or complex tap coefficients to provide an arbitrary frequency response is still a challenge. In this paper, an overview of photonic microwave delay-line filters with nonuniformly spaced taps, by which an arbitrary bandpass frequency response can be achieved with all-positive tap coefficients, is presented. We show that the nonuniform time delays provide equivalent phase shifts to the tap coefficients, while the all-positive-coefficient nature simplifies greatly the filter realization. Based on the theory, a 50-tap flat-top bandpass filter with a quadratic phase response is designed and analyzed. A seven-tap nonuniformly spaced photonic microwave filter with a flat-top and chirp-free bandpass response is then demonstrated. The use of the proposed technique for advanced microwave signal processing is then discussed. The generation of a chirped microwave signal and a phase-coded microwave signal are discussed and demonstrated. The use of the proposed technique to design a FIR filter for microwave matched filtering is also discussed and experimentally demonstrated.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 11 )