By Topic

A Transfer-Function Approach to Dual-Rate Controller Design for Unstable and Non-Minimum-Phase Plants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Julian Salt ; Instituto de Automática e Informática Industrial, Department of Systems Engineering and Control, Universidad Politécnica de Valencia, Spain ; A. Sala ; Pedro Albertos

An algebraic design via Diophantine equations of dual-rate regulators for linear unstable and non-minimum-phase plants, generalizing the well-known constraints for the reference model in single-rate systems, is presented in this brief. This brief improves previous results achieving internal stability for this kind of plants, by means of adapting the Youla parametrization of all stabilizing controllers to the dual-rate case. A simulation example on a robotic model, as well as an experimental magnetic levitation setup, are presented.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:19 ,  Issue: 5 )