By Topic

A System-on-Chip EPC Gen-2 Passive UHF RFID Tag With Embedded Temperature Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Jun Yin ; Department of Electronics and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong ; Jun Yi ; Man Kay Law ; Yunxiao Ling
more authors

This paper presents a system-on-chip passive RFID tag with an embedded temperature sensor for the EPC Gen-2 protocol in the 900-MHz UHF frequency band. A dual-path clock generator is proposed to support both applications with either very accurate link frequency or very low power consumption. On-chip temperature sensing is accomplished with a time-readout scheme to reduce the power consumption. Moreover, a gain-compensation technique is proposed to reduce the temperature sensing error due to process variations by using the same bandgap reference of the tag to generate bias currents for both the current-to-digital converter and the clock generator of the sensor. Also integrated is a 128-bit one-time-programmable (OTP) memory array based on gate-oxide antifuse without extra mask steps. Fabricated in a standard 0.18- μm CMOS process with analog options, the 1.1-mm2 tag chip is bonded onto an antenna using flip-chip technology to realize a complete tag inlay, which is successfully demonstrated and evaluated in real-time wireless communications with commercial RFID readers. The tag inlay achieves a sensitivity of -6 dBm and a sensing inaccuracy of ±0.8° C (3 σ inaccuracy) over operating temperature range from -20°C to 30°C with one-point calibration.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:45 ,  Issue: 11 )