By Topic

Semisupervised Kernel Matrix Learning by Kernel Propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Enliang Hu ; Dept. of Math., Yunnan Normal Univ., Kunming, China ; Songcan Chen ; Daoqiang Zhang ; Xuesong Yin

The goal of semisupervised kernel matrix learning (SS-KML) is to learn a kernel matrix on all the given samples on which just a little supervised information, such as class label or pairwise constraint, is provided. Despite extensive research, the performance of SS-KML still leaves some space for improvement in terms of effectiveness and efficiency. For example, a recent pairwise constraints propagation (PCP) algorithm has formulated SS-KML into a semidefinite programming (SDP) problem, but its computation is very expensive, which undoubtedly restricts PCPs scalability in practice. In this paper, a novel algorithm, called kernel propagation (KP), is proposed to improve the comprehensive performance in SS-KML. The main idea of KP is first to learn a small-sized sub-kernel matrix (named seed-kernel matrix) and then propagate it into a larger-sized full-kernel matrix. Specifically, the implementation of KP consists of three stages: 1) separate the supervised sample (sub)set from the full sample set ; 2) learn a seed-kernel matrix on through solving a small-scale SDP problem; and 3) propagate the learnt seed-kernel matrix into a full-kernel matrix on . Furthermore, following the idea in KP, we naturally develop two conveniently realizable out-of-sample extensions for KML: one is batch-style extension, and the other is online-style extension. The experiments demonstrate that KP is encouraging in both effectiveness and efficiency compared with three state-of-the-art algorithms and its related out-of-sample extensions are promising too.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 11 )