By Topic

Device and Architecture Outlook for Beyond CMOS Switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bernstein, K. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA ; Cavin, R.K. ; Porod, W. ; Seabaugh, A.
more authors

Sooner or later, fundamental limitations destine complementary metal-oxide-semiconductor (CMOS) scaling to a conclusion. A number of unique switches have been proposed as replacements, many of which do not even use electron charge as the state variable. Instead, these nanoscale structures pass tokens in the spin, excitonic, photonic, magnetic, quantum, or even heat domains. Emergent physical behaviors and idiosyncrasies of these novel switches can complement the execution of specific algorithms or workloads by enabling quite unique architectures. Ultimately, exploiting these unusual responses will extend throughput in high-performance computing. Alternative tokens also require new transport mechanisms to replace the conventional chip wire interconnect schemes of charge-based computing. New intrinsic limits to scaling in post-CMOS technologies are likely to be bounded ultimately by thermodynamic entropy and Shannon noise.

Published in:

Proceedings of the IEEE  (Volume:98 ,  Issue: 12 )