By Topic

Analysis of coronary heart disease and prediction of heart attack in coal mining regions using data mining techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Srinivas ; Jyothishmathi Institute of Technology & Science, Karimnagar ; G. Raghavendra Rao ; A. Govardhan

Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is extremely important but complicated task that should be performed accurately and efficiently. This study analyzes the Behavioral Risk Factor Surveillance System, survey to test whether self-reported cardiovascular disease rates are higher in Singareni coal mining regions in Andhra Pradesh state, India, compared to other regions after control for other risks. Dependent variables include self-reported measures of being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (1) chest pain (2) stroke and (3) heart attack. Heart care study specifies 15 attributes to predict the morbidity. Beside regular attributes other general attributes BMI (Body Mass Index), physician supply, age, ethnicity, education, income, and others are used for prediction. An automated system for medical diagnosis would enhance medical care and reduce costs. In this paper popular data mining techniques namely, Decision Trees, Naïve Bayes and Neural Network are used for prediction of heart disease.

Published in:

Computer Science and Education (ICCSE), 2010 5th International Conference on

Date of Conference:

24-27 Aug. 2010