By Topic

Decentralised control of voltage in distribution systems by distributed generators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tanaka, K. ; Fac. of Eng., Univ. of the Ryukyus, Nakagami, Japan ; Oshiro, M. ; Toma, S. ; Yona, A.
more authors

Recently, renewable energy such as wind turbine generators and photovoltaic systems are introduced as distributed generators (DGs). Connection of a large amount of DG causes voltage deviation beyond the statutory range in distribution systems. Reactive power control of inverters interfaced with DGs is one of the solutions against this problem. Additionally, reactive power control has a possibility to contribute to the reduction of distribution loss. In this study, the authors propose a voltage control method in distribution systems by reactive power control of inverters interfaced with DGs. The proposed method has been developed in order to reduce distribution loss and voltage regulation into statutory range without any telecommunication. In the proposed method, each interfaced inverter controls reactive power based on voltage control reference, which is calculated from self-information. The calculation rule of control reference has been developed using optimal data which consist of relations between randomly given inputs and corresponding optimal outputs, which are calculated by an optimisation technique. Simulations are conducted to show the effectiveness of the proposed method.

Published in:

Generation, Transmission & Distribution, IET  (Volume:4 ,  Issue: 11 )