By Topic

Optical Synthesis of Terahertz and Millimeter-Wave Frequencies With Discrete Mode Diode Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
O'Brien, S. ; Tyndall Nat. Inst., Univ. Coll. Cork, Cork, Ireland ; Osborne, S. ; Bitauld, D. ; Brandonisio, N.
more authors

It is shown that optical synthesis of terahertz and millimeter-wave frequencies can be achieved using two-mode and mode-locked discrete mode diode lasers. These edge-emitting devices incorporate a spatially varying refractive index profile, which is designed according to the spectral output desired of the laser. We first demonstrate a device that supports two primary modes simultaneously with high spectral purity. In this case, sinusoidal modulation of the optical intensity at terahertz frequencies can be obtained. Cross saturation of the material gain in quantum-well lasers prevents simultaneous lasing of two modes with spacings in the millimeter-wave region. We show finally that by mode locking devices that are designed to support a minimal set of four primary modes, we obtain a sinusoidal modulation of the optical intensity in this frequency region.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 11 )