By Topic

Recent results on bent and hyper-bent functions and their link with some exponential sums

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sihem Mesnager ; LAGA, UMR 7539, CNRS, Department of Mathematics, University of Paris VIII and University of Paris XIII, 2 rue de la liberté, 93526 Saint-Denis Cedex, France

Bent functions are maximally nonlinear Boolean functions with an even number of variables. They were introduced by Rothaus in 1976. For their own sake as interesting combinatorial objects, but also because of their relations to coding theory (Reed-Muller codes) and applications in cryptography (design of stream ciphers), they have attracted a lot of research, specially in the last 15 years. The class of bent functions contains a subclass of functions, introduced by Youssef and Gong in 2001, the so-called hyper-bent functions whose properties are still stronger and whose elements are still rarer than bent functions. Bent and hyper-bent functions are not classified. A complete classification of these functions is elusive and looks hopeless. So, it is important to design constructions in order to know as many of (hyper)-bent functions as possible. This paper is devoted to the constructions of bent and hyper-bent Boolean functions in polynomial forms. We survey and present an overview of the constructions discovered recently. We extensively investigate the link between the bentness property of such functions and some exponential sums (involving Dickson polynomials).

Published in:

Information Theory Workshop (ITW), 2010 IEEE

Date of Conference:

Aug. 30 2010-Sept. 3 2010