Cart (Loading....) | Create Account
Close category search window
 

A graphical model for computing the minimum cost transposition distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Farnoud, F. ; Univ. of Illinois, Urbana, IL, USA ; Chien-Yu Chen ; Milenkovic, O. ; Kashyap, N.

We address the problem of finding the minimum decomposition of a permutation in terms of transpositions with non-uniform cost. For metric-path costs, we describe exact polynomial-time decomposition algorithms. For extended-metric-path cost functions, we describe polynomial-time constant-approximation decomposition algorithms. Our algorithms rely on graphical representations of permutations and graph-search techniques for minimizing the permutation decomposition cost. The presented algorithms have applications in information theory, bioinformatics, and algebra.

Published in:

Information Theory Workshop (ITW), 2010 IEEE

Date of Conference:

Aug. 30 2010-Sept. 3 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.