Cart (Loading....) | Create Account
Close category search window
 

Investigations of bio markers for human lymphoblastoid cells using Atomic Force Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ruiguo Yang ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Ning Xi ; Fung, C.K.M. ; King Wai Chiu Lai
more authors

We report the use of Atomic Force Microcopy (AFM) in combination with Fluorescence Microscopy (FM) for the investigation of non-Hodgkin's type B cells lymphoma after antibody treatment. Rituximab is used in the treatment this cancer type. It is a chimeric monoclonal antibody directed against the protein Cluster of Differentiation 20 (CD20), which is expressed on mature B cells, including the B cell lymphoma surface. We applied anti-CD20 antibody to the B lymphoma cells that was labeled with fluorophore. Simultaneous imaging was then performed by both FM and AFM. Immunofluorescence imaging confirms the binding of Rituximab to the CD20 protein; while the AFM imaging revealed changes in lymphoma cells in terms of mean cell height and cell surface roughness. In addition, our AFM based nanomanipulation system can assist in the analysis of mechanical property of the cell by recording the force-displacement curves at the cell surface. AFM imaging and measurements may provide biomarkers of cell behavior and may facilitate the treatment of lymphoma clinically as a pretest to determine the effectiveness of the drug Rituximab on lymphoma cells from individual patients.

Published in:

Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference on

Date of Conference:

20-23 Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.