By Topic

Extracting User Interests from Search Query Logs: A Clustering Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Limam, L. ; Fak. fur Math. und Inf., Univ. Passau, Passau, Germany ; Coquil, D. ; Kosch, Harald ; Brunie, L.

This paper proposes to enhance search query log analysis by taking into account the semantic properties of query terms. We first describe a method for extracting a global semantic representation of a search query log and then show how we can use it to semantically extract the user interests. The global representation is composed of a taxonomy that organizes query terms based on generalization/specialization (“is a”) semantic relations and of a function to measure the semantic distance between terms. We then define a query terms clustering algorithm that is applied to the log representation to extract user interests. The evaluation has been done on large real-life logs of a popular search engine.

Published in:

Database and Expert Systems Applications (DEXA), 2010 Workshop on

Date of Conference:

Aug. 30 2010-Sept. 3 2010