By Topic

A genetic algorithm based stochastic simulation approach to chance constrained interval valued multiobjective decision making problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pal, B.B. ; Dept. of Math., Univ. of Kalyani, Kalyani, India ; Gupta, S. ; Chakraborti, D.

This article presents how the stochastic simulation through genetic algorithm (GA) can be used to modeling and solving chance constrained interval valued multiobjective decision making (MODM) problems. In the proposed method, a stochastic simulation approach to the chance constraints is employed for interval valued goal representation of the objectives as well as decision identification through the use of an GA method in an inexact decision making context. In the executable goal programming (GP) model of the problem, both the aspects of the GP, minsum GP and minmax GP, are addressed within goal achievement function for minimizing possible regrets associated with the deviational variables of the defined goals for goal achievement within the target intervals specified in the decision making environment. A numerical example is solved and a comparison is made with the conventional GP approach.

Published in:

Computing Communication and Networking Technologies (ICCCNT), 2010 International Conference on

Date of Conference:

29-31 July 2010