By Topic

A robust fuzzy clustering technique with spatial neighborhood information for effective medical image segmentation: An efficient variants of fuzzy clustering technique with spatial information for effective noisy medical image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Zulaikha Beevi ; Department of IT, National College of Engineering, Tamilnadu, India ; M. Mohammed Sathik ; K. Senthamaraikannan ; J. H. Jaseema Yasmin

Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques do exist. Of them, a group of segmentation algorithms is based on the clustering concepts. In our research, we have intended to devise efficient variants of Fuzzy C-Means (FCM) clustering towards effective segmentation of medical images. The enhanced variants of FCM clustering are to be devised in a way to effectively segment noisy medical images. The medical images generally are bound to contain noise while acquisition. So, the algorithms devised for medical image segmentation must be robust to noise for achieving desirable segmentation results. The existing variants of FCM-based algorithms, segment images without considering the spatial information, which makes it sensitive to noise. We proposed the algorithm, which incorporate spatial information into FCM, have shown considerable resilience to noise, yet with increased noise levels in images, these approaches have not performed exceptionally well. In the proposed research, the input noisy medical images are employed to a denoising algorithm with the help of effective denoising algorithm prior to segmentation. Moreover, the proposed approach will improve upon the existing variants of FCM-based segmentation algorithms by integrating the spatial neighborhood information present in the images for better segmentation. The spatial neighborhood information of the images will be determined using a factor that represents the spatial influence of the neighboring pixels on the current pixel. The employed factor works on the assumption that the membership degree of a pixel to a cluster is greatly influenced by the membership of its neighborhood pixels. Subsequently, the denoised images will be segmented using the designed variants of FCM. The proposed segmentation approach will be robust to noisy images even at increased levels of noise, thereby enabling effective segmentation of noisy medical images.

Published in:

Computing Communication and Networking Technologies (ICCCNT), 2010 International Conference on

Date of Conference:

29-31 July 2010