Cart (Loading....) | Create Account
Close category search window
 

Energy Efficient Scheduling for Real-Time Embedded Systems with QoS Guarantee

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Linwei Niu ; Dept. of Math & Comput. Sci., Claflin Univ., Orangeburg, SC, USA

While the dynamic voltage scaling (DVS) techniques are efficient in reducing the dynamic energy consumption for the processor, varying voltage alone becomes less effective for the overall energy reduction as the static power is growing rapidly. On the other hand, Quality of Service (QoS) is also a primary concern in the development of today's pervasive computing systems. In this paper, we propose a dynamic approach to minimize the overall energy consumption for soft real-time systems while ensuring the QoS-guarantee. The QoS requirements are deterministically quantified with the window-constraints, which require that at least m out of each non-overlapped window of k consecutive jobs of a task meet their deadlines. Necessary and sufficient conditions for checking the feasibility of task sets with arbitrary service times and periods are developed to ensure that the window-constraints can be guaranteed in the worst case. And efficient scheduling techniques based on pattern variation and dynamic slack reclaiming extensions are proposed to combine the task procrastination and dynamic slowdown to minimize the energy consumption. In contrast to the previous leakage-aware slack reclaiming work which never scales the job speed below the critical speed, we will show that it can be more energy efficient to reclaim the slack with speed lower than the critical speed when necessary. Through extensive simulations, our experiment results demonstrate that the proposed techniques significantly outperformed the previous research in both overall and idle energy reduction.

Published in:

Embedded and Real-Time Computing Systems and Applications (RTCSA), 2010 IEEE 16th International Conference on

Date of Conference:

23-25 Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.