By Topic

Quasi-Cyclic LDPC Codes: An Algebraic Construction, Rank Analysis, and Codes on Latin Squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li Zhang ; Department of Electrical and Computer Engineering, University of California, Davis, CA, 95616 USA ; Qin Huang ; Shu Lin ; Khaled Abdel-Ghaffar
more authors

Quasi-cyclic LDPC codes are the most promising class of structured LDPC codes due to their ease of implementation and excellent performance over noisy channels when decoded with message-passing algorithms as extensive simulation studies have shown. In this paper, an approach for constructing quasi-cyclic LDPC codes based on Latin squares over finite fields is presented. By analyzing the parity-check matrices of these codes, combinatorial expressions for their ranks and dimensions are derived. Experimental results show that, with iterative decoding algorithms, the constructed codes perform very well over the AWGN and the binary erasure channels.

Published in:

IEEE Transactions on Communications  (Volume:58 ,  Issue: 11 )