Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Automated Detection of White Matter Changes in Elderly People Using Fuzzy, Geostatistical, and Information Combining Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pham, T.D. ; Sch. of Eng. & Inf. Technol., Univ. of New South Wales, Canberra, ACT, Australia ; Berger, K.

Detection of white matter changes of the brain using magnetic resonance imaging (MRI) has increasingly been an active and challenging research area in computational neuroscience. There have rarely been any single image analysis methods that can effectively address the issue of automated quantification of neuroimages, which are subject to different interests of various medical hypotheses. This paper presents new image segmentation models for automated detection of white matter changes of the brain in an elderly population. The methods are based on the computational models of fuzzy clustering, possibilistic clustering, geostatistics, and knowledge combination. Experimental results on MRI data have shown that the proposed image analysis methodology can be applied as a very useful computerized tool for the validation of our particular medical question, where white matter changes of the brain are thought to be the most important social medical evidence.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 2 )