By Topic

Dictionary Learning for Stereo Image Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ivana Tosic ; Redwood Center for Theoretical Neuroscience, University of California at Berkeley (UCB), Berkeley, CA, USA ; Pascal Frossard

One of the major challenges in multi-view imaging is the definition of a representation that reveals the intrinsic geometry of the visual information. Sparse image representations with overcomplete geometric dictionaries offer a way to efficiently approximate these images, such that the multi-view geometric structure becomes explicit in the representation. However, the choice of a good dictionary in this case is far from obvious. We propose a new method for learning overcomplete dictionaries that are adapted to the joint representation of stereo images. We first formulate a sparse stereo image model where the multi-view correlation is described by local geometric transforms of dictionary elements (atoms) in two stereo views. A maximum-likelihood (ML) method for learning stereo dictionaries is then proposed, where a multi-view geometry constraint is included in the probabilistic model. The ML objective function is optimized using the expectation-maximization algorithm. We apply the learning algorithm to the case of omnidirectional images, where we learn scales of atoms in a parametric dictionary. The resulting dictionaries provide better performance in the joint representation of stereo omnidirectional images as well as improved multi-view feature matching. We finally discuss and demonstrate the benefits of dictionary learning for distributed scene representation and camera pose estimation.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 4 )