We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Phase-Interpolated Averaging for Analyzing Electroencephalography and Magnetoencephalography Epochs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Matani, A. ; Grad. Sch. of Frontier Sci., Univ. of Tokyo, Kashiwa, Japan ; Naruse, Y. ; Terazono, Y. ; Fujimaki, N.
more authors

Stimulus-locked averages of electroencephalography (EEG) and magnetoencephalography (MEG) epochs reveal characteristic waveforms. EEG/MEG generation models to have reconstruct such waveforms have been recently proposed. These models assume that evoked, phase-modulated, and amplitude-modulated activities occur solely or simultaneously. We propose a two-stage stimulus-locked averaging method, called phase-interpolated averaging, to investigate the EEG/MEG generation process. First, virtual EEG/MEG epochs, which would be obtained as if instantaneous phases for each time sampling point were on a phase-grid, are interpolated from actually measured EEG/MEG epochs. Then, the virtual EEG/MEG epochs are discrete Fourier transformed. A simulation revealed that the zeroth Fourier term revealed the evoked activity, the first Fourier term revealed the amplitude-modulated activity, and the condition number of the interpolation reflected the phase-modulated activity. On the basis of these facts, a preliminary EEG analysis implied that the evoked activity is much smaller than what would be expected by using conventional averaging, the evoked and phase-modulated activities simultaneously occur, and the amplitude-modulated activity occasionally associates with the evoked and phase-modulated activities. To the best of our knowledge, this is the first time that these three activities have been shown to coexist by actually separating them.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 1 )