By Topic

A 14-GHz AC-Coupled Clock Distribution Scheme With Phase Averaging Technique Using Single LC-VCO and Distributed Phase Interpolators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Niitsu, K. ; Dept. of Electron. & Electr. Eng., Keio Univ., Yokohama, Japan ; Kulkarni, V.V. ; Shinmo Kang ; Ishikuro, H.
more authors

In this paper, we report the world's first ac-coupled clock distribution circuit for low-power and high-frequency clock distribution. By employing the proposed ac-coupled LC-based voltage-controlled oscillator (LC-VCO) and phase interpolators, the use of conventional current-mode-logic (CML) buffers with large power requirements can be prevented, and power consumption for clock distribution can be reduced. With the aim of verifying the effectiveness of the proposed circuit, test chips were designed and fabricated in 0.18-μm mixed-signal CMOS technology. The measured results indicated a 14.007 GHz clock distribution to four points whose pitches are 450 μm, with 6.9 mW of power. The phase noise was measured to be -79.06 dBc/Hz at a 100 kHz offset, - 101.66 dBc/Hz at a 1 MHz offset, and -107.25 dBc/Hz at a 10 MHz offset, with a clock frequency of 12.96 GHz. Furthermore, a phase averaging technique for reducing phase deviation was proposed and theoretically investigated.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 11 )