By Topic

A Flexible Approach to Improving System Reliability with Virtual Lockstep

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jeffery, C.M. ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Figueiredo, R.J.O.

There is an increasing need for fault tolerance capabilities in logic devices brought about by the scaling of transistors to ever smaller geometries. This paper presents a hypervisor-based replication approach that can be applied to commodity hardware to allow for virtually lockstepped execution. It offers many of the benefits of hardware-based lockstep while being cheaper and easier to implement and more flexible in the configurations supported. A novel form of processor state fingerprinting is also presented, which can significantly reduce the fault detection latency. This further improves reliability by triggering rollback recovery before errors are recorded to a checkpoint. The mechanisms are validated using a full prototype and the benchmarks considered indicate an average performance overhead of approximately 14 percent with the possibility for significant optimization. Finally, a unique method of using virtual lockstep for fault injection testing is presented and used to show that significant detection latency reduction is achievable by comparing only a small amount of data across replicas.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:9 ,  Issue: 1 )