By Topic

Probabilistic Model-Driven Recovery in Distributed Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joshi, K.R. ; AT&T Labs. Res., Florham Park, NJ, USA ; Hiltunen, M.A. ; Sanders, W.H. ; Schlichting, R.D.

Automatic system monitoring and recovery has the potential to provide effective, low-cost ways to improve dependability in distributed software systems. However, automating recovery is challenging in practice because accurate fault diagnosis is hampered by monitoring tools and techniques that often have low fault coverage, poor fault localization, detection delays, and false positives. In this paper, we present a holistic model-based approach that overcomes these challenges and enables automatic recovery in distributed systems. To do so, it uses theoretically sound techniques including Bayesian estimation and Markov decision theory to provide controllers that choose good, if not optimal, recovery actions according to a user-defined optimization criteria. By combining monitoring and recovery, the approach realizes benefits that could not have been obtained by using them in isolation. We experimentally validate our framework by fault injection on realistic e-commerce systems.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:8 ,  Issue: 6 )