Cart (Loading....) | Create Account
Close category search window
 

Answering General Time-Sensitive Queries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dakka, W. ; Google, Mountain View, CA, USA ; Gravano, L. ; Ipeirotis, P.G.

Time is an important dimension of relevance for a large number of searches, such as over blogs and news archives. So far, research on searching over such collections has largely focused on locating topically similar documents for a query. Unfortunately, topic similarity alone is not always sufficient for document ranking. In this paper, we observe that, for an important class of queries that we call time-sensitive queries, the publication time of the documents in a news archive is important and should be considered in conjunction with the topic similarity to derive the final document ranking. Earlier work has focused on improving retrieval for “recency” queries that target recent documents. We propose a more general framework for handling time-sensitive queries and we automatically identify the important time intervals that are likely to be of interest for a query. Then, we build scoring techniques that seamlessly integrate the temporal aspect into the overall ranking mechanism. We present an extensive experimental evaluation using a variety of news article data sets, including TREC data as well as real web data analyzed using the Amazon Mechanical Turk. We examine several techniques for detecting the important time intervals for a query over a news archive and for incorporating this information in the retrieval process. We show that our techniques are robust and significantly improve result quality for time-sensitive queries compared to state-of-the-art retrieval techniques.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.