Cart (Loading....) | Create Account
Close category search window
 

A Continuous-Time, Discrete-State Method for Simulating the Dynamics of Biochemical Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sabnis, A. ; Dept. of Biol., Georgia State Univ., Atlanta, GA, USA ; Harrison, R.W.

Computational systems biology is largely driven by mathematical modeling and simulation of biochemical networks, via continuous deterministic methods or discrete event stochastic methods. Although the deterministic methods are efficient in predicting the macroscopic behavior of a biochemical system, they are severely limited by their inability to represent the stochastic effects of random molecular fluctuations at lower concentration. In this work, we have presented a novel method for simulating biochemical networks based on a deterministic solution with a modification that permits the incorporation of stochastic effects. To demonstrate the feasibility of our approach, we have tested our method on three previously reported biochemical networks. The results, while staying true to their deterministic form, also reflect the stochastic effects of random fluctuations that are dominant as the system transitions into a lower concentration. This ability to adapt to a concentration gradient makes this method particularly attractive for systems biology-based applications.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 2 )

Date of Publication:

March-April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.