By Topic

A control algorithm for the maximum power point tracking and the reactive power injection from grid-connected PV systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Delfino, F. ; Dept. of Electr. Eng., Univ. of Genoa, Genova, Italy ; Denegri, G.B. ; Invernizzi, M. ; Procopio, R.

This paper deals with the use of large-size Photovoltaic (PV) units as providers of the reactive power compensation ancillary service. To do this, a suitable control scheme has been developed, which is based on an advanced control theory, called FeedBack Linearization (FBL), widely employed in the robotics field but still not so popular in power systems engineering. This allows to regulate both the injection of reactive power and the PV voltage, which is fixed to the value corresponding to the maximum power extraction from the PV unit, thanks to the implementation of an efficient MPPT algorithm, whose main features are described in detail. Several simulations are performed in the PSCAD-EMTDC electromagnetic environment to validate the proposed approach.

Published in:

Power and Energy Society General Meeting, 2010 IEEE

Date of Conference:

25-29 July 2010