By Topic

Kalman filtering and smoothing solutions to temporal Gaussian process regression models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hartikainen, J. ; Dept. of Biomed. Eng. & Comput. Sci., Aalto Univ., Espoo, Finland ; Särkkä, S.

In this paper, we show how temporal (i.e., time-series) Gaussian process regression models in machine learning can be reformulated as linear-Gaussian state space models, which can be solved exactly with classical Kalman filtering theory. The result is an efficient non-parametric learning algorithm, whose computational complexity grows linearly with respect to number of observations. We show how the reformulation can be done for Matérn family of covariance functions analytically and for squared exponential covariance function by applying spectral Taylor series approximation. Advantages of the proposed approach are illustrated with two numerical experiments.

Published in:

Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on

Date of Conference:

Aug. 29 2010-Sept. 1 2010