Cart (Loading....) | Create Account
Close category search window
 

Time-optimal trajectories for cooperative multi-manipulator systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moon, S.B. ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; Ahmad, S.

We present two schemes for planning the time-optimal trajectory for cooperative multi-manipulator system (CMMS) carrying a common object. We assume that the desired path is given and parameterizable by an arclength variable. Both approaches take into account the dynamics of the manipulators and object. The first approach employs linear programming techniques, and it allows us to obtain the time-optimal execution of the given task utilizing the maximum torque capacities of the joint motors. The second approach is a sub-time-optimal method that is computationally very efficient. In the second approach the given load is divided into a share for each robot in the CMMS in a manner in which the trajectory acceleration/deceleration is maximized, hence the trajectory execution time is minimized. This load distribution approach uses optimization schemes that degenerate to a linear search algorithm for the case of two robots manipulating a common load, and this results in significant reduction of computation time. The load distribution scheme not only enables us to reduce the computation time, but also gives us the possibility of applying this method in real-time planning and control of CMMS. Further, we show that for certain object trajectories the load distribution scheme yields truly time-optimal trajectories

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 2 )

Date of Publication:

Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.